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Microscopic self-organization in networks
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We report our numerical studies on microscopic self-organization of a reaction system in three types of
differently connected networks: a regular network, a small-world network, and a random network. Our simu-
lation results show that the topology of the network has an important effect on the communication among
reaction molecules, and plays an important role in microscopic self-organization. The correlation length among
reacting molecules in a random or a small-world network is much shorter compared with that in a regular one.
As a result, it is much easier to obtain microscopic self-organization in a small-world or a random network. We
also observed a phase transition from a stochastic state to a synchronized state when we increased the ran-
domness of a small-world network.
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[. INTRODUCTION a hypothetical enzymatic reaction. They assume that the re-
action takes place in a tiny reactor which is too small to use
Since the concepts of dissipative structure and selfa reaction-diffusion model, and studied the reactions with
organization were developed more than 20 years[d¢gd, computer simulations. The situation considered is an extreme
studies on self-organization in reaction and reactionsituation where the diffusion of molecules is treated as an
diffusion systems have generated fruitful res{i8s5]. Hun-  instantaneous event. The diffusive transport of regulatory
dreds of chemical oscillators have been discovered and stugarticles is discarded, and the whole allosteric activation re-
ied [3,6]. The mechanism of these chemical oscillators camction is simplified as a stochastic substrate binding of regu-
all be explained by macroscopic self-organization, wher@atory molecules to enzymes and subsequent stepping ahead
time translational symmetry breaking takes place as a resulff internal states of activated enzymes. Their simulation re-
of the nonlinear chemical kinetics of the system. In receniyts show that when certain conditions are satisfied, this
years, Mikhailov and co-workerls’,8] developed a concept mechanism can lead to the development of strong deviations

of self-organization and proposed a different model t0 eX45m equilibrium. As a result, coherent oscillations will be

plain self-organization phenomena in a reactor of MICro-gpserved. A mean field model was also givenh

scopic length scale. They named the phenomena “micro- In this paper, we report our model study of microscopic

SC?EIZﬁSIrf-ngggéztg?o&e time for a chemical substance tself-organization phenomena in networks rather than in a dif-
9 ' Susive medium. In our model, reactions take place at the

diffuse across a reactor is long compared with the time fora "~ .
rtices of a network and the reacting substance moves along

reaction process. Therefore, reactions can be considered \ég our stud irat h e diff ;
an instantaneous event. As a result, reactions of differerff?9€S. ©ur Study concentrates on the role difierent connec-

molecules can be considered as independent, and the concdBf? toPologies of networks play on the dynamics of the mi-
of a Markov process can be applied to develop classical resroSCopic self-organization. Three types of networks are ex-
action kinetics, known as the mass action law. At the sam@mined: a regular network, a small-world network, and a
time, a local equilibrium principld1] is applicable. These random network. A small-world network is situated between
ingredients are necessary for macroscopic self-organizatiogompletely regular and completely random networks. Watts
However, the situation is fundamentally different in a tiny and Strogat{9-11] reported that when the randomness of a
reactor of micrometer size. In this case, the time needed fonetwork increases from a regular one, the average distance
molecules to diffuse all over the reactor is comparable obetween vertices drops very rapidiyn the model, the dis-
even shorter than the time of one cycle of the reaction protance between two vertices is defined as the least number of
cess. Consequently, the reaction can no longer be consideredges that constitute a path between the two verjidéss
as instantaneous, and the reactions of different moleculasieans that the ability of the network to transfer information
may have strong correlations through diffusive or other kindsncreases dramatically as soon as a little randomness is added
of communication. Therefore, the mass action law and locaio a regular network. We found that in certain range of trans-
equilibrium principle discussed by Nicolis and Prigog[d¢  portation rate, microscopic self-organization can be observed
can no longer be applied here. The mechanism of selfin a random or a small-world network, and the phenomena
organization changes from nonlinear chemical kinetics to thare very similar to that discussed by Mikhailov and co-
strong correlations between reaction molecules. workers[7,8], but in a regular network the dynamic behavior
The model of Mikhailov and co-workefg,8] is based on  of the system is different. It behaves like in a large reactor,
where chemical oscillations are much weaker or totally dis-
appear. Transitions from the stochastic state to a synchro-
*Corresponding author. Electronic address: nized state as a function of the increase of the randomness of
gi@mail.phy.pku.edu.cn a small-world network is observed.

1063-651X/2001/642)/0261115)/$20.00 64 026111-1 ©2001 The American Physical Society



KAl SUN AND QI OUYANG PHYSICAL REVIEW E 64 026111

Il. MODEL enzyme enters into recovery stat&<®<S,. When &
fattains the value db,, the enzyme goes back to the rest state
® =0, and a reaction cycle is completed.
We divide time into units, each unit of time beidg. We
S+E—ES—P, [P]—0, assume that the transition froh=0 to ®=1 can occur
only at discrete time momentg=nAt, n=1,23... . In
where the binding of substrat® by enzymekE is allosteri-  each unit of time, eacP, which is moving randomly along
cally activated by produd®?, andP will die as time passes by the edges of the network, will visity vertices. If it meets an
with a certain probability. Since in most casEsis much  E that is staying on stat® =0, theE will convert from state
heavier thanP, we assume thék is sitting steadily in the ®=0 to ®=1 with probability P, . If it meets anE that is
vertices of a network, whil® is moving along the edges. We staying on a state other thah=0, theP will go on to the
also assumed that there are more than en@)glo we need next vertex, which is chosen randomly from the vertices that
not considerSin our simulations. are linked directly to this vertex. This process will go on
As in the report of Mikhailov and Hed¥], we use the until the P has meeny vertices. In the meantime, other en-
integer phase variabl® and discrete time to describe the zymes which are at rest and not meeR avill remain at the
process of the reactiod® stands for the states of an enzyme rest state, and those enzymes which are not staying at rest
in a reaction cycle. It takes values between 0 &dHere state will convert from state to state® +1. When anE
® =0 is the rest state. The reaction startsbat 1 and pro- reaches the sta®=S,;, a P will be released. If® reaches
ceeds asb increases. Atb=S, a P is produced, so that 1 S;, theE will return to stateb =0. The corresponding math-
=®<§, is the reacting state. After the production®fthe  ematical formula is the following:

Our reaction model is largely based on the model o
Mikhailov and Hesg7]. The reaction can be described as

d(n)+1 if 0<P(n)<Sy—1,

if &(n)=S—1,

with probability P,, if ®(n)=0 and there is aP, (1)
with probability 1-P,, if ®(n)=0 and there s aP,

if ®(n)=0 and there is noP.

d(n+1)=

o O +—» O

In every unit time, & will die with a certain probability —a small-world network. By tuning, we can set up different
P4. HerePy is chosen to be big enough to assure that thenetworks with different connection topologies which can
average life span oP is much shorter than the period of a change from completely regular to completely random. As
reaction cycle. Thus the total number®fat timen+1 can  Watts and Strogatz reportd®], the average distance be-
be calculated as tween vertices(L) drops very rapidly asX increases, as
shown in Fig. 1.

In our simulation, the total number of vertex is
4096 (N=4096), and each vertex has 16 edges on average
(K=16). On every vertex there is an enzyfBeA reaction

N
Np<n+1>=Np<n>+i§lA((I»i(n)—sl)—kd, (2)

in which

0 if x#0, 451"

AO=11 4f x=o, \

where Np is the number ofP, andky is the number ofP 30
which die in this unit time.

Our networks are based on the model developed by Watts -l .
and Strogat£9]. To make it clear, we give a brief summary 154 \\
here. We start from a ring lattice witki vertices anK edges L
per vertex which are linked to the neardstvertices. The '\-\.\,\_\
topology of this network is obviously regular. We randomly 0 N
choseXXNXK/2 (0=sX=<1) edges from the network and 10° 10° 10" 10’
rewired them randomly. WheXis 0, there will never be any X
edge which is rewired, so that the network is totally regular.

WhenXis 1, all the edges will be randomly rewired, so the  FIG. 1. The average distande of networks as a function of
network is totally random. IX stands between 0 and 1, it is randomnesX in the small-world network model.
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FIG. 2. The histogram of phase distribution of enzyfat a FIG. 3. The changes of amplitudeas a function of randomness

fixed time[(a),(c),(e)] and the concentration of produetas a func-  of network X [(a)—(c)] and as a function of the inverse of the net-
tion of time [(b),(d),(f)]. (@ and (b) a regular networkX=0; (c) work distance 1/ [(d)—(e)] for different transportation rates, of
and (d) a small-world networkX=0.0122;(e) and (f) a random  product P. Other parameters were fixed® =0.4248 andPy
network, X=1. The other parameters were fixedy=5, P, =0.2441.
=0.4248, andP3=0.2441.

a given transport rate,, there exists a critical value of
cycle takes 100 unit of time3,=100) and &P is released in = Xc, below which the amplitude of oscillation stays almost
half of a cycle 6,=50). At the beginning, there are 300 constant or increases little as the increask,dfeyond which

randomly distributed in the network, and all tRestay at the It increases rapidly. In other words, whefiincrease, the
rest @=0) state. system undergoes a transition from a stochastic phase where

the reaction events are independent to a synchronized phase
where reaction events are correlated. The principal cause of
Ill. RESULTS the transition is that the distance between two vertickes
Define Ng(S) as the number of which are staying at fined as the least n_umber of edges that c_onstitute a path be-
state®=S: define Np as the number oP at a unit time. tween the two vertlce)sdgcreases dramatically as the ran-
Figure 2 gives examples of the stochastic and synchronizedomness of the networK increases, so that communication
behavior of the system. The left column of the figure showsAMoNg molecules becomes much easier. This view can be

the phase distribution of the enzymatic reaction; the rightvell verified by the plots of the right column in Fig. 3, which
column gives the product populatiddp as a function of shows the increase & as a function of 1/. One observes

time. One observes that, with a given diffusion ratg ( that the shapes of the curves between the plots of left and

=5), there is almost no oscillation in a regular network, agight columns are very similar. In fact, we can defingas

shown in Figs. 23) and 2b), so that the reaction events are the critical value ofl.. _
uncorrelated or stochastic. As soon as only about 1% of !fwe compare the three plots of the I&ér right) column

edges K=0.01) are randomly rewired, strong oscillations N Fi9- 3, we see thaX, (or 11.) decreases as the transport
appear, as shown in Figs(@ and 4d), so that the reaction 'ateng increases. Defining the transition point as the point at
events are correlated and synchronized. The amplitude d¥hich A increase most rapidly as a functionXfor 11, the
oscillations increases as the randomness of the network iftansition point isX=0.0077 or 1L=0.12 forng=2; they
creases. WheiX=1, corresponding to a random network, 0€comeX.=0.0039 or W.=0.091 with ng=3, and de-
the amplitude increases to the maximum, as shown in Figgrease toX,=9.8x10™" or 11..=0.044 whenny increases
2(e) and 2f). If we change the value d8;, we can have a © 9. This behavior is also understandable in terms of com-

different number of peaks in the phase distributiorot ~ Munication among enzyme molecules, since the increase of

shown), as reported by Mikhailov and He§g]. the transport rate favors the communication. The phenom-
In order to study the transition behavior of the system, weEnOn can be observed more clearly in a phase diagram shown
define the amplitude of the oscillatiodsas in Fig. 4, whereny and X are the control parameters. The
light part of the figure is in a random state and the dark part
A=max{Np(7)|t<r<t+SyAt} is in a synchronized state. The thick black line in the figure
defines the boundary of the transition between these two
—min{Np(7) [t 7<t+ SHAt} 3 states. Figure 4 shows that in order to keep the system in a

synchronized state, it needs more random links with a low
and plotA as a function of control parameters. Figure 3transport rate; the requirement of randomness of the network
shows some transition diagrams of the system. The left colbecomes less as the increase of the transport rate; mgisn
umn of Fig. 3 gives the amplitud® as a function of random- more than 10, the transition is more or less independent of
ness of the network. In these plots, one observes that with the randomness of the network.
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15 network, as shown in Fig. 2. The amplitude of oscillations
will increase rapidly as a function of randomness of network,
and attains to a maximum in a random network. In other
words, the topology of the network affects the self-
organization of the system.

In this model, the diffusion rate must be large enough to
ensureP has a large enough possibility to be diffused to any

300.0 corner of the network before it decays. It is much easier to do
150.0 so when the transport ratg; is large. As a result, the oscil-
0 lation will be less dependent on the topology of the network

when ny is large. This explains the decrease Xf as nqy
increases, as shown in Fig. 4. Wheg is large enoughP
can diffuse fast enough even in a regular network, so that the
X synchronized state is in any of the networks. In this case,

FIG. 4. The phase diagram as a functionngfand X, with P, there is no phase change, as the increas¥ ahd critical

=0.4248 andP4=0.2441. The grey level of the figure represents point will ,Stay atx=0. o .
the amplitude of oscillations. There is also weak oscillations in a regular network, as

shown in Figs. 2a) and Zb). The amplitude is very small
compared with a small-word and a random one. This occurs
because the size of the network in the model is not large

This self-organization phenomenon can be explained ag"ough, so that the diffusion &f covers quite a part of the

follows. As described earlier, in the model, each enzyme regular network. This makes the information diffusion quasi-
has its own reaction cycle ’so that the re,action of each englobal. When the network becomes larger, the oscillation in a

zymes is periodic. However, different enzymes will have aregular network W|Il_becom_e weaker and finally disappear.
One of the most interesting results of the researches con-

random phase in the reaction cycle, so that globally the pe- - .
riodicity will be averaged out. In order to have a self- d_ucted by Mlkhallov and I—!es{s?] may lie in the fact that the
organization, messengers are needed to spread information fe O.f their tlny reactqr_ls cc_)mpa_rable W'.th the size .Of a
the phases of eadBall over the network and to synchronize blologlcal cell. Slnce_ a living biological cell is a naturgl tiny
all these reaction cycles. The product molecRlserves as cheml_cal_reapto_r, _th|s model may be a way 1o explain self-
the role of the messenger. In the modelhas two features. organization in living cell412]. But Fhe'r. model has an as-
First, it carries the phase information of tRghat generates sumption that .‘"‘” molgcules are d|ffu5|o_n rqndomly in the
it. SinceP has a large decay rate and will die soon after jtstiny reactor. 'Th|_s premise cannot be met n "V'F‘Q cells. Some
generation, if we find & in the network, we can affirm that researches indicate that the substances in a living body trav-
there must be ai that passed the staf just a little time els along Uetworks_- The_statement has bee_n proved b_y vark-
ago. The second character Rfis that it catalyzes the enzy- ous experiments, including the transportation of nutriment

matic reaction. These two features enabBléo spread the ?’T‘O”Q ﬁr%%ns_rﬁ.nd thlf d|ffu5|ond01; molecu:es n a Smgl?
phase information oF in the network. iving cell [13]. This makes our model more relevant to a real

However, only these two features do not guarantee sy world. While no further evidence shows that the situation in

chronizations among enzymes to engender oscillations. A ving cells is similar as our model for simula_tions, we hppe
other requirement is needed. The information must be difo4f resea_rches can shed light on the chemical dynamics of
fused quickly all over the network. Oscillations will not be 1VINg bodies.
observed, unless the information-diffusion ability of the net-

work is strong enough. Since the ability to transport infor-

mation will increase dramatically when we add some ran- We thank H. L. Wang and L. Q. Zhou for discussions.
domness to a regular netwofR], oscillations will start as This work was partly supported by the Chinese Natural Sci-
soon as one adds a small number of random links to a regul&ance Foundation and Jun-Zheng Foundation in PKU.

IV. DISCUSSION AND CONCLUSION
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