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Microscopic self-organization in networks

Kai Sun and Qi Ouyang*
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~Received 7 March 2001; published 19 July 2001!

We report our numerical studies on microscopic self-organization of a reaction system in three types of
differently connected networks: a regular network, a small-world network, and a random network. Our simu-
lation results show that the topology of the network has an important effect on the communication among
reaction molecules, and plays an important role in microscopic self-organization. The correlation length among
reacting molecules in a random or a small-world network is much shorter compared with that in a regular one.
As a result, it is much easier to obtain microscopic self-organization in a small-world or a random network. We
also observed a phase transition from a stochastic state to a synchronized state when we increased the ran-
domness of a small-world network.
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I. INTRODUCTION

Since the concepts of dissipative structure and s
organization were developed more than 20 years ago@1,2#,
studies on self-organization in reaction and reacti
diffusion systems have generated fruitful results@3–5#. Hun-
dreds of chemical oscillators have been discovered and s
ied @3,6#. The mechanism of these chemical oscillators c
all be explained by macroscopic self-organization, wh
time translational symmetry breaking takes place as a re
of the nonlinear chemical kinetics of the system. In rec
years, Mikhailov and co-workers@7,8# developed a concep
of self-organization and proposed a different model to
plain self-organization phenomena in a reactor of mic
scopic length scale. They named the phenomena ‘‘mic
scopic self-organization.’’

In a large reactor, the time for a chemical substance
diffuse across a reactor is long compared with the time fo
reaction process. Therefore, reactions can be considere
an instantaneous event. As a result, reactions of diffe
molecules can be considered as independent, and the co
of a Markov process can be applied to develop classica
action kinetics, known as the mass action law. At the sa
time, a local equilibrium principle@1# is applicable. These
ingredients are necessary for macroscopic self-organiza
However, the situation is fundamentally different in a tin
reactor of micrometer size. In this case, the time needed
molecules to diffuse all over the reactor is comparable
even shorter than the time of one cycle of the reaction p
cess. Consequently, the reaction can no longer be consid
as instantaneous, and the reactions of different molec
may have strong correlations through diffusive or other kin
of communication. Therefore, the mass action law and lo
equilibrium principle discussed by Nicolis and Prigogine@1#
can no longer be applied here. The mechanism of s
organization changes from nonlinear chemical kinetics to
strong correlations between reaction molecules.

The model of Mikhailov and co-workers@7,8# is based on
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a hypothetical enzymatic reaction. They assume that the
action takes place in a tiny reactor which is too small to u
a reaction-diffusion model, and studied the reactions w
computer simulations. The situation considered is an extre
situation where the diffusion of molecules is treated as
instantaneous event. The diffusive transport of regulat
particles is discarded, and the whole allosteric activation
action is simplified as a stochastic substrate binding of re
latory molecules to enzymes and subsequent stepping a
of internal states of activated enzymes. Their simulation
sults show that when certain conditions are satisfied,
mechanism can lead to the development of strong deviat
from equilibrium. As a result, coherent oscillations will b
observed. A mean field model was also given@8#.

In this paper, we report our model study of microscop
self-organization phenomena in networks rather than in a
fusive medium. In our model, reactions take place at
vertices of a network and the reacting substance moves a
edges. Our study concentrates on the role different conn
tion topologies of networks play on the dynamics of the m
croscopic self-organization. Three types of networks are
amined: a regular network, a small-world network, and
random network. A small-world network is situated betwe
completely regular and completely random networks. Wa
and Strogatz@9–11# reported that when the randomness o
network increases from a regular one, the average dista
between vertices drops very rapidly.~In the model, the dis-
tance between two vertices is defined as the least numbe
edges that constitute a path between the two vertices.! This
means that the ability of the network to transfer informati
increases dramatically as soon as a little randomness is a
to a regular network. We found that in certain range of tra
portation rate, microscopic self-organization can be obser
in a random or a small-world network, and the phenome
are very similar to that discussed by Mikhailov and c
workers@7,8#, but in a regular network the dynamic behavi
of the system is different. It behaves like in a large reac
where chemical oscillations are much weaker or totally d
appear. Transitions from the stochastic state to a sync
nized state as a function of the increase of the randomnes
a small-world network is observed.
©2001 The American Physical Society11-1
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II. MODEL

Our reaction model is largely based on the model
Mikhailov and Hess@7#. The reaction can be described as

S1E→ES→P, @P#→0,

where the binding of substrateS by enzymeE is allosteri-
cally activated by productP, andP will die as time passes by
with a certain probability. Since in most casesE is much
heavier thanP, we assume thatE is sitting steadily in the
vertices of a network, whileP is moving along the edges. W
also assumed that there are more than enoughS, so we need
not considerS in our simulations.

As in the report of Mikhailov and Hess@7#, we use the
integer phase variableF and discrete time to describe th
process of the reaction.F stands for the states of an enzym
in a reaction cycle. It takes values between 0 andS0. Here
F50 is the rest state. The reaction starts atF51 and pro-
ceeds asF increases. AtF5S1 a P is produced, so that 1
<F<S1 is the reacting state. After the production ofP, the
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enzyme enters into recovery states,S1,F<S0. When F
attains the value ofS0, the enzyme goes back to the rest sta
F50, and a reaction cycle is completed.

We divide time into units, each unit of time beingDt. We
assume that the transition fromF50 to F51 can occur
only at discrete time momentstn5nDt, n51,2,3, . . . . In
each unit of time, eachP, which is moving randomly along
the edges of the network, will visitnd vertices. If it meets an
E that is staying on stateF50, theE will convert from state
F50 to F51 with probability Pr . If it meets anE that is
staying on a state other thanF50, theP will go on to the
next vertex, which is chosen randomly from the vertices t
are linked directly to this vertex. This process will go o
until the P has meetnd vertices. In the meantime, other en
zymes which are at rest and not meet aP will remain at the
rest state, and those enzymes which are not staying at
state will convert from stateF to stateF11. When anE
reaches the stateF5S1, a P will be released. IfF reaches
S0, theE will return to stateF50. The corresponding math
ematical formula is the following:
F~n11!55
F~n!11 if 0,F~n!,S021,

0 if F~n!5S021,

1 with probability Pr , if F~n!50 and there is aP,

0 with probability 12Pr , if F~n!50 and there is aP,

0 if F~n!50 and there is noP.

~1!
t
an
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-

is
age
In every unit time, aP will die with a certain probability
Pd . Here Pd is chosen to be big enough to assure that
average life span ofP is much shorter than the period of
reaction cycle. Thus the total number ofP at timen11 can
be calculated as

NP~n11!5NP~n!1(
i 51

N

D~F i~n!2S1!2kd , ~2!

in which

D~x!5H 0 if xÞ0,

1 if x50,

where NP is the number ofP, and kd is the number ofP
which die in this unit time.

Our networks are based on the model developed by W
and Strogatz@9#. To make it clear, we give a brief summa
here. We start from a ring lattice withN vertices andK edges
per vertex which are linked to the nearestK vertices. The
topology of this network is obviously regular. We random
choseX3N3K/2 (0<X<1) edges from the network an
rewired them randomly. WhenX is 0, there will never be any
edge which is rewired, so that the network is totally regu
WhenX is 1, all the edges will be randomly rewired, so t
network is totally random. IfX stands between 0 and 1, it
e

tts

r.

a small-world network. By tuningX, we can set up differen
networks with different connection topologies which c
change from completely regular to completely random.
Watts and Strogatz reported@9#, the average distance be
tween vertices~L! drops very rapidly asX increases, as
shown in Fig. 1.

In our simulation, the total number of vertex
4096 (N54096), and each vertex has 16 edges on aver
(K516). On every vertex there is an enzymeE. A reaction

FIG. 1. The average distanceL of networks as a function of
randomnessX in the small-world network model.
1-2
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cycle takes 100 unit of time (S05100) and aP is released in
half of a cycle (S1550). At the beginning, there are 300P
randomly distributed in the network, and all theE stay at the
rest (F50) state.

III. RESULTS

Define NE(S) as the number ofE which are staying at
stateF5S; define NP as the number ofP at a unit time.
Figure 2 gives examples of the stochastic and synchron
behavior of the system. The left column of the figure sho
the phase distribution of the enzymatic reaction; the ri
column gives the product populationNP as a function of
time. One observes that, with a given diffusion rate (nd
55), there is almost no oscillation in a regular network,
shown in Figs. 2~a! and 2~b!, so that the reaction events a
uncorrelated or stochastic. As soon as only about 1%
edges (X50.01) are randomly rewired, strong oscillatio
appear, as shown in Figs. 2~c! and 2~d!, so that the reaction
events are correlated and synchronized. The amplitud
oscillations increases as the randomness of the network
creases. WhenX51, corresponding to a random networ
the amplitude increases to the maximum, as shown in F
2~e! and 2~f!. If we change the value ofS1, we can have a
different number of peaks in the phase distribution~not
shown!, as reported by Mikhailov and Hess@7#.

In order to study the transition behavior of the system,
define the amplitude of the oscillationsA as

A5max$NP~t!ut<t<t1S0Dt%

2min$NP~t!ut<t<t1S0Dt% ~3!

and plot A as a function of control parameters. Figure
shows some transition diagrams of the system. The left
umn of Fig. 3 gives the amplitudeA as a function of random
ness of the networkX. In these plots, one observes that w

FIG. 2. The histogram of phase distribution of enzymeE at a
fixed time@~a!,~c!,~e!# and the concentration of productP as a func-
tion of time @~b!,~d!,~f!#. ~a! and ~b! a regular network,X50; ~c!
and ~d! a small-world network,X50.0122; ~e! and ~f! a random
network, X51. The other parameters were fixed:nd55, Pr

50.4248, andPd50.2441.
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a given transport ratend , there exists a critical value ofX
5Xc , below which the amplitude of oscillation stays almo
constant or increases little as the increase ofX, beyond which
it increases rapidly. In other words, whenX increase, the
system undergoes a transition from a stochastic phase w
the reaction events are independent to a synchronized p
where reaction events are correlated. The principal caus
the transition is that the distance between two vertices~de-
fined as the least number of edges that constitute a path
tween the two vertices! decreases dramatically as the ra
domness of the networkX increases, so that communicatio
among molecules becomes much easier. This view can
well verified by the plots of the right column in Fig. 3, whic
shows the increase ofA as a function of 1/L. One observes
that the shapes of the curves between the plots of left
right columns are very similar. In fact, we can defineLc as
the critical value ofL.

If we compare the three plots of the left~or right! column
in Fig. 3, we see thatXc ~or 1/Lc) decreases as the transpo
ratend increases. Defining the transition point as the poin
which A increase most rapidly as a function ofX or 1/L, the
transition point isXc50.0077 or 1/Lc50.12 fornd52; they
becomeXc50.0039 or 1/Lc50.091 with nd53, and de-
crease toXc59.831024 or 1/Lc50.044 whennd increases
to 9. This behavior is also understandable in terms of co
munication among enzyme molecules, since the increas
the transport rate favors the communication. The pheno
enon can be observed more clearly in a phase diagram sh
in Fig. 4, wherend and X are the control parameters. Th
light part of the figure is in a random state and the dark p
is in a synchronized state. The thick black line in the figu
defines the boundary of the transition between these
states. Figure 4 shows that in order to keep the system
synchronized state, it needs more random links with a l
transport rate; the requirement of randomness of the netw
becomes less as the increase of the transport rate; whennd is
more than 10, the transition is more or less independen
the randomness of the network.

FIG. 3. The changes of amplitudeA as a function of randomnes
of networkX @~a!–~c!# and as a function of the inverse of the ne
work distance 1/L @~d!–~e!# for different transportation ratesnd of
product P. Other parameters were fixed:Pr50.4248 and Pd

50.2441.
1-3
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IV. DISCUSSION AND CONCLUSION

This self-organization phenomenon can be explained
follows. As described earlier, in the model, each enzyme~E!
has its own reaction cycle, so that the reaction of each
zymes is periodic. However, different enzymes will have
random phase in the reaction cycle, so that globally the
riodicity will be averaged out. In order to have a se
organization, messengers are needed to spread informati
the phases of eachE all over the network and to synchroniz
all these reaction cycles. The product moleculeP serves as
the role of the messenger. In the model,P has two features
First, it carries the phase information of theE that generates
it. SinceP has a large decay rate and will die soon after
generation, if we find aP in the network, we can affirm tha
there must be anE that passed the stateS1 just a little time
ago. The second character ofP is that it catalyzes the enzy
matic reaction. These two features enableP to spread the
phase information ofE in the network.

However, only these two features do not guarantee s
chronizations among enzymes to engender oscillations.
other requirement is needed. The information must be
fused quickly all over the network. Oscillations will not b
observed, unless the information-diffusion ability of the n
work is strong enough. Since the ability to transport inf
mation will increase dramatically when we add some r
domness to a regular network@9#, oscillations will start as
soon as one adds a small number of random links to a reg

FIG. 4. The phase diagram as a function ofnd andX, with Pr

50.4248 andPd50.2441. The grey level of the figure represen
the amplitude of oscillations.
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network, as shown in Fig. 2. The amplitude of oscillatio
will increase rapidly as a function of randomness of netwo
and attains to a maximum in a random network. In oth
words, the topology of the network affects the se
organization of the system.

In this model, the diffusion rate must be large enough
ensureP has a large enough possibility to be diffused to a
corner of the network before it decays. It is much easier to
so when the transport ratend is large. As a result, the oscil
lation will be less dependent on the topology of the netwo
when nd is large. This explains the decrease ofXc as nd
increases, as shown in Fig. 4. Whennd is large enough,P
can diffuse fast enough even in a regular network, so that
synchronized state is in any of the networks. In this ca
there is no phase change, as the increase ofX and critical
point will stay atX50.

There is also weak oscillations in a regular network,
shown in Figs. 2~a! and 2~b!. The amplitude is very smal
compared with a small-word and a random one. This occ
because the size of the network in the model is not la
enough, so that the diffusion ofP covers quite a part of the
regular network. This makes the information diffusion qua
global. When the network becomes larger, the oscillation i
regular network will become weaker and finally disappea

One of the most interesting results of the researches c
ducted by Mikhailov and Hess@7# may lie in the fact that the
size of their tiny reactor is comparable with the size of
biological cell. Since a living biological cell is a natural tin
chemical reactor, this model may be a way to explain s
organization in living cells@12#. But their model has an as
sumption that all molecules are diffusion randomly in t
tiny reactor. This premise cannot be met in living cells. So
researches indicate that the substances in a living body t
els along networks. The statement has been proved by v
ous experiments, including the transportation of nutrim
among organs and the diffusion of molecules in a sin
living cell @13#. This makes our model more relevant to a re
world. While no further evidence shows that the situation
living cells is similar as our model for simulations, we hop
our researches can shed light on the chemical dynamic
living bodies.
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